
Establishing a date for the initial settlement
of Pacific islands has been a contentious is-
sue among archaeologists almost since the

advent of absolute dating methods (e.g., Anderson
1995). During the past roughly two decades ar-
chaeologists have made rather dramatic progress
narrowing the dating disparities that plagued ear-
lier researchers. This has been achieved by (1) re-
dating sites that appeared to be early, which has al-
most always resulted in significantly younger ages
(e.g., Anderson and Sinoto 2002; Anderson and
Smith 1992; Dye and Pantaleo 2010; Kirch and
McCoy 2007; Rolett and Conte 1995); (2) em-
ploying various forms of chronometric hygiene

(Anderson 1991; Dye 2000; Spriggs and Anderson
1993) or date classification (Rieth et al. 2011;
Wilmshurst et al. 2011a) to eliminate poorly
provenienced samples, samples of low reliability,
or those with an unknown ocean reservoir contri-
bution; (3) great improvements in the technology
of radiocarbon dating, particularly in the pretreat-
ment of samples and the now common employ-
ment of the AMS technology, which has greatly re-
duced the standard error associated with date
determinations; (4) use of short-lived plant taxa or
plant parts to reduce the inbuilt age of samples
(Dye 2000; McFadgen 1982); and (5) the appli-
cation of Bayesian calibration (Denham et al.
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of Rattus exulans, a Polynesian introduction, may refine the dating model, as would archaeological investigations focused
on potential early site locations. 

Estimaciones recientes de cuando fue colonizado Hawai’i por los Polinesios muestran una gran variabilidad, con fechas supe-
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2012; Dye 2011; Dye and Pantaleo 2010; Petchey
et al. 2011). We believe that most archaeologists
would agree that research of the last two decades
has established the broad outline of the timing of
settlement throughout the Pacific, with the settle-
ment of East Polynesia, of which Hawai‘i is a
part, occurring between about A.D. 900 and 1250
(Anderson and Sinoto 2002; Wilmshurst et al.
2011a). However, this is still a fairly broad range,
which impedes our ability to identify the process
or processes underlying such an extraordinary feat
of finding and colonizing remote and isolated
archipelagos and islands in the vast ocean of East
Polynesia. 

In this paper we focus on the dating of the
Polynesian colonization of Hawai‘i. Our point of
departure concerns recent papers on this subject by
Janet Wilmshurst and colleagues (2011a; see also
Mulrooney et al. 2011 and Wilmshurst et al.
2011b);1 Dye (2011); Kirch (2011); Rieth et al.
(2011); and Duarte (2012) (Table 1). It is encour-
aging that the topic garnered four published pa-
pers, a published letter and reply debate, and a
Master’s thesis within two years, with researchers
approaching the issue from three distinct per-
spectives. Using nearly identical methods,
Wilmshurst et al. (2011a), Rieth et al. (2011), and
Duarte (2012) classified large pools of archaeo-
logical radiocarbon dates based on their level of
precision and accuracy and produced summed
probability distributions using the most reliable
dates. Their results are statistically indistinguish-
able, estimating colonization of Hawai‘i by ca.
A.D. 1220–1260. Dye (2011) created a model-
based Bayesian calibration using dates from pale-
oenvironmental cores and from Polynesian-intro-
duced flora and fauna to estimate colonization
between A.D. 780–1119 (95 percent highest pos-

terior density region [HPD], equivalent to two
sigma). Kirch (2011) puts the issue into context by
reviewing and summarizing the history of ideas re-
lating to the timing of the colonization of Hawai‘i.
He then brings together the latest information, in-
cluding the chronology of settlement for the Cen-
tral East Polynesia region, paleoenvironmental
proxy records from O‘ahu and Kaua‘i, dates ob-
tained from bones of the Polynesian-introduced rat
Rattus exulans, and the re-dating of the Bellows
archaeological Site O18. He concludes (Kirch
2011:22) that colonization is “unlikely to have
occurred before A.D. 1000,” though he leaves
open the possibility that it could have happened in
the tenth century and that settlement was defi-
nitely established by A.D. 1200. 

Though all of these approaches have converged
upon a “short” (recent) chronology for Hawai‘i in
contrast to the “long” (early) chronology once fa-
vored by archaeologists (e.g., Graves and Addison
1995; Hunt and Holsen 1991; Kirch 1985), they
nevertheless continue to represent a considerable
range of possible settlement times, varying be-
tween about ca. 250–450 years.

We present the results of our model-based
chronology building, which carries this research a
bit further. Using a revised calibration chronology
for the Ordy Pond paleoenvironmental sequence
and an expansion of Dye’s (2011) Bayesian colo-
nization model, we address three components of
the settlement debate. The first is to attempt to re-
fine and narrow the A.D. 800–1250 time frame
posited for initial settlement. Although some may
feel that this is splitting hairs, considering the in-
herent statistical uncertainty of radiocarbon dates,
a more finely calibrated date has implications for
larger issues of Polynesian dispersals, including
whether Hawai‘i fits into a pattern of episodic
Austronesian radiations throughout the Pacific,
spurred by protracted ENSO events (Anderson et
al. 2006), population growth models (Rieth and
Athens 2013), and other issues. Secondly, we be-
lieve it is important to develop a statistical model
for whatever date range or ranges we derive be-
cause it forces us to be more rigorous in specify-
ing our assumptions and establishes the uncer-
tainty of our estimates. Thirdly, we believe that by
going through this process, we may be able to
pinpoint some directions for future research on the
issue of the initial colonization in Hawai‘i.

Table 1. Recent Hawai‘i Colonization Age Estimates.

Colonization Estimate Reference
A.D. 1214–1255 (Maui Island) Duarte 2012
A.D. 780–1119 Dye 2011
Possibly A.D. 900–1000, 

probable A.D. 1000s,
and colonization definite 
by A.D. 1200 Kirch 2011

A.D. 1220–1261 (Hawai‘i Island) Rieth et al. 2011
A.D. 1219–1266 Wilmshurst et al. 2011a
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Paleoenvironmental Studies

The paleoenvironmental data we utilize are from
the coring investigations at Ordy Pond, a large wa-
ter-filled limestone sinkhole in southwestern
O‘ahu (Athens 2009; Athens et al. 1999, 2002).
Although many paleoenvironmental coring stud-
ies have been conducted on O‘ahu and Kaua‘i, and
a few on the other larger islands, the Ordy Pond
sinkhole has some almost unique characteristics
that make it particularly suitable for obtaining
high resolution chronological and environmental
information. One of the most important of these is
the integrity of its stratigraphic column, dating
back almost 8,000 years (Uchikawa et al. 2008;
Uchikawa et al. 2010). Also, because there are no
drainages into the pond, the pollen record tends to
emphasize the local vegetation surrounding the
pond better than most other wetland locations.
Lastly, the finely lamellar sediments (except for
the upper part of the column) of alternating layers
of authigenic carbonates and diatom tests
(Uchikawa et al. 2008) and organic material
(mostly detrital algal remains) suggest minimal to
no bioturbation, which otherwise tends to muddle
the discrete sampling intervals. 

For this analysis, we are particularly interested
in the proxies indicating human settlement on
O‘ahu and the date when they first begin to appear
in the core record. The proxies consist of pollen
from plants that were introduced to Hawai‘i by
Polynesians at the time of initial settlement or
very close to the time of initial settlement.2 The
most important of these, because they produce
abundant pollen and therefore tend to be easily vis-
ible in the core records, are coconut palms (Cocos
nucifera) and candlenut (Aleurites moluccana,
called kukui in Hawaiian), and there are a few
others that appear fairly regularly. The micro-
scopic charcoal particle record is also an important
indicator of anthropogenic activities on O‘ahu,
since charcoal is entirely absent from the earlier
prehuman sediments as documented by many cor-
ing studies. Thus, the possibility that the earliest
charcoal might be the result of natural fires rather
than human activities seems virtually nil.

A revised age depth model of the Ordy Pond
core was performed using the clam software pack-
age, version 2.1. As discussed by Blaauw
(2010:516), clam “attempts to provide an easy, au-

tomated, transparent, documented and adaptable
environment for producing age-models from ra-
diocarbon sequences.” It allows the researcher to
easily consider different age-depth model choices
and to input such constraints as “presence or ab-
sence of a hiatus, reservoir effect, outliers, or an-
chor points.” For our purposes, an important fea-
ture of clam is that it can produce confidence
intervals for undated sampling levels (or inter-
vals) derived from the calibrated radiocarbon ages
at other points in the core sequence. 

A linear interpolation dating model was se-
lected because it involves only the assumption of
a regular progression of age with depth between
dating samples, which seems appropriate for a
sinkhole near sea level (there are not likely to be
depositional hiatuses given that the top of the sed-
iment column is well below sea level). Although
the available dates suggest relatively minor fluc-
tuations in depositional accumulation for the pre-
historic time period represented by the core
(Athens et al. 1999:71), more complex models are
not needed to accommodate these. Finally, the lim-
ited number of radiocarbon dates (3) and the sin-
gle pollen age estimate for the timing of the advent
of historic pollen do not lend themselves to the use
of more complex age models (e.g., cubic spline).

In order to highlight the selection of the Ordy
Pond paleoenvironmental record for modeling ini-
tial settlement, we provide comparative data from
the Weli Pond core (Athens and Ward 2000), one
of our best records after Ordy Pond for dating the
Polynesian colonization of O‘ahu. The problem is
that, while the pollen and charcoal records that
document initial colonization in Weli Pond fully
duplicate the Ordy Pond findings, the chronology
between these records is not synchronized, with
Weli Pond being earlier. As will be shown, the
bulk soil radiocarbon determinations obtained
from Weli Pond are likely the source of the dating
discrepancy. 

Archaeological Data
A conservative subset of archaeological radio-
carbon dates was selected for our Bayesian model.
These determinations were derived from (1)
charred wood and nutshells of Polynesian-intro-
duced taxa; (2) bones of the Polynesian-intro-
duced rat R. exulans, in which the dates have
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been obtained from properly pre-
treated/processed collagen samples (Rieth and
Athens 2013); and (3) charred wood/plant mate-
rial from short-lived plant taxa/parts obtained
from archaeological combustion features (Table
2). This selection of radiocarbon dates is conser-
vative in that the presence of these plants, ani-
mals, and archaeological features is wholly de-
pendent on people and thus must belong to the
post-colonization period. Contemporaneous, or
older, dates obtained from identified short-lived
native plant taxa/parts collected from non-fea-
ture archaeological midden or cultural deposits
were avoided because the sample association with
an archaeological event was ambiguous, and for
Maui and Hawai‘i Island, there is a possibility that
the charcoal could be from natural fires predating
humans. With regards to the Polynesian-intro-
duced plants, the in-built age of these samples
(e.g., A. molluccana, C. nucifera, Syzgium malac-
cense, and others) is of no concern, because the
target event of interest is not the specific archae-
ological feature or cultural deposit, but rather the
timing of human colonization, which cannot post-
date the growth of the plant.

Thirty-three archaeological dates are used in
our Bayesian model; 16 are from Polynesian-in-
troduced plants, seven are from R. exulans bones,

and 10 are from short-lived plant materials from
archaeological combustion features (Figure 1).
Six of these dates were included in Dye’s (2011)
initial presentation of the Bayesian model. Geo-
graphically, 19 of the dates are from O‘ahu, nine
are from Hawai‘i Island, and five are from Maui
(Figure 2).

Statistical Modeling
The Bayesian model was calibrated using the BCal
software (Buck et al. 1999) and the IntCal09
Northern Hemisphere curve (Reimer et al. 2009).
As described by Dye (2011:132), “A Bayesian
model to estimate the Polynesian colonization of
Hawaii can be simple. It establishes two periods,
one for the period before the islands were colo-
nized by Polynesians and one for the period after
the colonization event.” An advantage of Bayesian
models for archaeology and paleoenvironmental
studies derives from the incorporation of prior
knowledge into the statistical calculations, thereby
“bookending” or limiting probability distributions.
The application of Bayesian statistics to archaeo-
logical chronologies is fully described by Buck et
al. (1996).

The Hawai‘i colonization model can be ex-
pressed as:
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Figure 1. Count of radiocarbon dates by origin or type, including hearth features, rat bones, and various Polynesian-
introduced plant taxa. These include A. moluccana (candlenut, kukui), R. exulans (Pacific rat), C. fruticosa (ti, kī), A.
altilis (breadfruit, ‘ulu), C. nucifera (coconut, niu), I. batatas (sweet potato, ‘uala), L. siceraria (bottle gourd, ipu), and S.
malaccense (mountain apple, ‘ōhi‘a ‘ai).
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αpre > βpre = αpost > βpost = 0

where αpre and βpre represent the beginning and
end of the pre-colonization period, while αpost and
βpost signify the beginning and end of the post-
colonization period; “>” means “older than.”
Again from Dye (2011:132), “The parameters
of interest in this model are βpre and αpost, which
the model indicates are equal; the colonization
event simultaneously ended the pre-colonization
period and began the post-colonization period.”
While our present model treats the settlement of
the Hawaiian archipelago as a unitary phenome-
non, we leave open the possibility that future
high resolution data might disclose a sequence of
initial settlement for the different islands (or even
of district/regional settlement within the indi-
vidual islands). 

The pre-colonization period includes two ra-
diocarbon determinations (Table 2). One of these,
used in Dye’s (2011) earlier model, is from a seed

obtained from Ordy Pond at the 668 cmbs interval,
which is well below the earliest signs of human ac-
tivities in this record (which definitely begins at
the 630–632 cmbs interval, though, less conclu-
sively, may be as early as the 643–644.5 cmbs in-
terval [see Athens et al. 1999:176]). The other
pre-colonization date was obtained from fibrous
plant material, mostly endemic palm (Pritchardia
sp.) roots, collected from the base of a paleoenvi-
ronmental core at Kaloko Pond, Pu‘uhonua o Hō-
naunau National Historical Park (Athens et al.
2007). The pollen record for this level of the core
indicates an entirely pristine lowland native forest
in this area, which other paleoenvironmental re-
search has shown to antedate the arrival of humans
(Athens 1997; Athens et al. 2002). Ideally, dates
included in the pre-colonization group relate to de-
posits immediately predating paleoenvironmental
evidence for human activity because such dates
yield more precise estimates of the colonization
event.

REPORTS 149

Figure 2. Hawaiian archipelago displaying the locations from which pre- and post-colonization radiocarbon dates were
obtained for the Bayesian model and also the paleoenvironmental coring locations.
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Results
Paleoenvironmental Data
The Ordy Pond pollen diagram (Athens 2009;
Athens et al. 1999, 2002) is quite interesting be-
cause even a glance shows there are substantial
changes occurring at what is clearly the prehis-
toric/prehuman interface of the record. The first
appearance of charcoal particles occurs in the
630–632 cmbs interval, along with a “possible”
coconut pollen grain, and there are also several
major vegetation shifts.3 At the next higher study
interval at 618–619.5 cmbs, we see not only a
major increase in charcoal particles, but also the
definite presence of coconut, and there are major
changes in the frequency of other plant taxa as
well. In fact, a transformation of the landscape had
occurred in a matter of scarcely 100 years, and per-
haps in much less time (Athens 2009:1495; Athens
et al. 2002:63). Extensive archaeological investi-
gations on the ‘Ewa Plain where Ordy Pond is lo-
cated show that very few, if any, people were oc-
cupying this arid landscape at this early period for
another 100 to 200 years (Athens et al. 2002) and
that it is not until after about A.D. 1250 that the
charcoal particle record suggests local settlement
(the density and size of charcoal particles sub-
stantially increase at this time, suggesting a more
local origin, and hence proximal settlement and
agriculture [Athens et al. 1999:83–85; Clark 1988;
Patterson et al. 1987]). Presumably this was be-
cause the aridity of the ‘Ewa Plain would have
been unfavorable for habitation and agriculture
compared to many other areas on O‘ahu.

Thus, at Ordy Pond, we regard the critical study
interval for Hawaiian colonization as the 630–632
cmbs interval. To date this interval, we utilized a
linear interpolation model based on three AMS ra-
diocarbon determinations on two seeds and one
piece of wood (the uppermost 14C sample), which
were almost evenly spaced in the stratigraphic
column. We also estimated a date of 120 B.P.
(A.D. 1830) for the upper part of the core when
historic pollen first began to appear in the record;
Western contact and influence had become per-
vasive in the islands by this date. Obviously our
task would be much easier if we could directly ra-
diocarbon date the two intervals of interest, but un-
fortunately plant material for dating in this core
was limited to just the three dated samples in the

entire column (the algal mat lenses were inappro-
priate for dating [Athens et al. 1999:63–65]). Thus,
it was necessary to interpolate dates for the pollen
and charcoal particle sampling intervals. The clam
statistical program provided an interpolated age es-
timate at a 95 percent confidence interval for the
630–632 cmbs interval of A.D. 936–1133 (Table
3). By way of comparison, an estimate is also
provided for the next higher interval at 618–619.5
cmbs. An external comparison is also provided by
two intervals from a core obtained from Weli Pond
along the south coast of O‘ahu (Figure 2). The
deepest Weli Pond interval having charcoal parti-
cles along with a single grain of kukui pollen is at
560–563 cmbs, and the next highest interval at
545–548 cmbs displays substantial vegetation
changes, three Polynesian plant introductions
(kukui, C. nucifera, and Cordyline fruticosa), and
also a quantum increase in charcoal particles. 

As may be seen in Table 3, the two cores pro-
vide conflicting dating results, with the Weli Pond
record indicating colonization at A.D. 703–966
and Ordy Pond at A.D. 936–1133, with the latter
only minimally overlapping the date range of Weli
Pond at two standard deviations. We have greater
confidence in the Ordy Pond dates because they
were obtained from macro-plant remains that must
derive from the immediate environs of Ordy Pond,
while the Weli Pond dates derive from bulk sedi-
ment. The problem is that the bulk sediment ap-
parently incorporated older carbon material de-
posited from erosion of the interior slopes through
colluvial and fluvial action (see Anderson 1994 for
a discussion of the problem of bulk soil radiocar-
bon dates in pollen cores from Mangaia, Cook Is-
lands). That this is probably the case is suggested
by the date for the latest clearly prehuman vegeta-
tion at Ordy Pond, which is A.D. 829–1065 (Table
3).4 In our view, it is not realistic for dates of ma-
jor vegetation changes of the landscape to differ at
locations on leeward O‘ahu separated by only 17
km with no significant geographical barriers or
differences in the paleo-vegetation communities.
Thus, we feel confident that the Weli Pond dates
are too early due to the incorporation of older car-
bon in the bulk soil radiocarbon samples.
Archaeological Bayesian Model
The results of the Bayesian calibration of radio-
carbon dates obtained from archaeological fea-
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tures, Polynesian-introduced plant taxa, and bones
of Polynesian-introduced rats yield an estimate
of the colonization date, given the data and model
parameters. This date converges with the interpo-
lated estimate obtained from Ordy Pond. The 95
percent HPD for an iteration of the model using
the dates from only Polynesian-introduced flora
and archaeological combustion features is A.D.
1000–1210 (Figure 3). Adding the R. exulans
bones to the model produces a 95 percent HPD of
A.D. 940–1129, 60–70 years older than the model
that excludes the rat bone dates. 

Conclusions
Within the last few years, renewed inquiry into the
timing of Polynesian colonization of Hawai‘i has
resulted in estimates ranging from ~A.D. 800 to

1250. Our reanalysis of the Ordy Pond paleoen-
vironmental record using clam software and an ex-
pansion of Dye’s (2011) model-based Bayesian
calibration converge on the 95 percent HPD range
of A.D. 940–1129 as the best estimate of the col-
onization event. 

If a 67 percent HPD is used, the Polynesian col-
onization of Hawai‘i would most probably have
occurred between about A.D. 1000 and 1100.
Scarcely 50 years later in the Ordy Pond record, by
A.D. 993–1176, population expansion on O‘ahu is
evident in substantially increased charcoal counts
and major pollen changes at Ordy Pond. This ex-
pansion is mirrored in the archaeological data in
the form of radiocarbon dated Polynesian plant in-
troductions and combustion features (Table 2).

With respect to the rat bone dates, admittedly
there are unresolved questions regarding the po-
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Table 3. Interpolated Age Estimates from Clam Statistical Program, Ordy Pond and Weli Pond 
(95 Percent Confidence Interval).

Calibrated Calibrated 2-sigma
2-sigma 2-sigma Age

Depth Date Range Date Range Spread
Location (cmbs) (yrs. B.P.) (yrs. A.D.) (yrs.) Significance
Ordy Pond 618–619.5 774–957 993–1176 183 Substantial native vegetation changes,

abundant charcoal, and Polynesian-introduction
Ordy Pond 630–632 817–1014 936–1133 197 Substantial native vegetation changes,

first charcoal, and possible Polynesian-
introduction

Ordy Pond 651–653 885–1121 829–1065 235 Unchanged native forest, no charcoal, 
no Polynesian-introductions

Weli Pond 545–548 926–1162 788–1024 236 Substantial native vegetation changes,
abundant charcoal and Polynesian-introductions

Weli Pond 560–563 984–1247 703–966 263 Minor native vegetation changes, first 
charcoal, and Polynesian-introduction

Figure 3. 95 percent HPD for two iterations of the Bayesian model, excluding (right) and including (left) Polynesian rat
bone dates.
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tential for a marine dietary component for the rats
(Commendador et al. 2012; Richards et al. 2009),
or the possibility of their intake and metabolism of
14C-depleted carbon in their food as a result of the
‘Ewa Plain’s limestone substrate.5 However, at
face value, the Bayesian model and Ordy Pond age
interpolation suggest settlement must have oc-
curred, with a 95 percent probability, between
A.D. 940 and 1130.

As Dye (2011:137) predicted, the addition of
more data has improved the precision of the age
estimate for colonization. Our results offer ana-
lytical support for Kirch’s (2011:22) preference for
a colonization date after A.D. 1000. We can now
also see that Wilmshurst et al. (2011a), Rieth et al.
(2011), and Duarte’s (2012) calculations docu-
ment the secure establishment of colonizing pop-
ulations in Hawai‘i, approximately 10–280 years
after initial colonization. 

As a practical matter, this research has pro-
vided insight into an apparent dating inconsis-
tency between the Ordy Pond and Weli Pond
cores. Consideration of the latest date for intact na-
tive vegetation in the Ordy Pond core, at A.D.
829–1065 (Table 3), suggests that the earlier dates
of the Weli Pond core must be due to the incorpo-
ration of older carbon in the bulk soil dating sam-
ples of this core. For much paleoenvironmental re-
search, such bulk soil dates on wetland/lake soils
(where not contaminated by 14C-depleted carbon
from groundwater or limestone sources) probably
have sufficient precision. The problem, however,
is that the level of required precision clearly varies
situationally. Thus, while the variation between the
Weli Pond and the Ordy Pond dates might be re-
garded as relatively minor for some research prob-
lems, it is too large if we are attempting to narrow
the timing of Polynesian colonization in Hawai‘i.

Our results highlight two future research di-
rections. One is that a systematic, geographically-
informed research program should be initiated to
select and test potential early settlement locales.
No such program has been undertaken in Hawai‘i,
and the current sample and distribution of known
early archaeological deposits has largely been a
product of chance investigations. Currently, the de-
posits at Bellows and Kualoa, on O‘ahu, and
Pololū, on Hawai‘i Island, are reliably dated to this
initial colonization period, but there must be oth-
ers. Second, further research on the dating of R. ex-

ulans bones is required to determine whether the
dietary habits of R. exulans need to be accounted
for in radiocarbon calibrations, and also to refine
the date when rats were introduced to Hawai‘i
and to evaluate the model for exponential growth
of rat populations following introduction by col-
onizing Polynesians (Athens 2009; Athens et al.
2002).
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Notes
1. Mulrooney et al. (2011) critiqued several of Wilmshurst

et al.’s (2011a) date classification criteria, noting that they are
“overly strict and exclude accurate estimators of early cultural
activity” (Mulrooney et al. 2011:E192). They reanalyzed
Wilmshurst et al.’s data sets using a different set of criteria, re-
sulting in estimates of A.D. 1184, 1230, and 1268 for colo-
nization of Hawaii (the range of ages is based on the applica-
tion of different criteria). In their reply to Mulrooney et al.
(2011), Wilmshurst et al. (2011b) point out, among other issues,
that Mulrooney et al.’s reanalysis only increases the age of col-
onization estimates proportional to the increased statistical er-
ror and uncertainty of the dates introduced by their relaxed se-
lection criteria.

2. The Polynesian introduction of numerous plant taxa to
Hawai‘i has been discussed by botanists (e.g., Nagata 1985;
Wagner et al. 1990). Confirmation of botanical assessments for
the introduction of many agricultural and non-agricultural taxa
has been confirmed palynologically in numerous wetland cores
in which the pollen of these taxa (e.g., coconut and kukui) is co-
incident with, or follows, the expected initial arrival of Poly-
nesians but is absent from earlier core intervals (Athens
1997:267–269). Some taxa, however, have been difficult to
identify palynologically due to rarity or non-diagnostic char-
acteristics. There have been a few modifications of several of
the botanical assessments.

3. Note that substantial changes in the pollen frequency of
several plant taxa begin in the earlier interval at 643–644.5
cmbs. While these earlier changes may be part of the same
process, human activities cannot be unambiguously associated
with them. 

4. The latest clearly prehuman vegetation for the Pu‘uhonua
core on Hawai‘i Island is slightly later at A.D. 972–1160,
which entirely falls after the Weli Pond date, though it is
within the earlier half of the Ordy Pond range. Whether this
means that Hawai‘i Island was settled slightly later than O‘ahu,
or only that the Pu‘uhonua area did not begin to manifest the
effects of Polynesian settlement until slightly later due to the
much larger size of this island, is unclear.

5. While representing a different environmental and
edaphic context, Wilmshurst et al. (2008:7678) did not observe
marine reservoir offsets in their stable isotope measurements
on a large suite of dated rat bones in New Zealand.

Submitted July 23, 2013; Revised September 26, 2013;
Accepted September 27, 2013.
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